112 research outputs found

    Functional deficits precede structural lesions in mice with high-fat diet-induced diabetic retinopathy

    Get PDF
    Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat dietā€“induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fatā€“fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fatā€“fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fatā€“fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease

    Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2

    Get PDF
    SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19

    A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome

    Get PDF
    Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration and considered as an endoplasmic reticulum (ER) disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome and the identification of two causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syndrome 2 (WFS2), a molecular mechanism linking the ER to death of neurons and Ī² cells has not been elucidated. Here we implicate calpain 2 in the mechanism of cell death in Wolfram syndrome. Calpain 2 is negatively regulated by WFS2, and elevated activation of calpain 2 by WFS2-knockdown correlates with cell death. Calpain activation is also induced by high cytosolic calcium mediated by the loss of function of WFS1. Calpain hyperactivation is observed in the WFS1 knockout mouse as well as in neural progenitor cells derived from induced pluripotent stem (iPS) cells of Wolfram syndrome patients. A small-scale small-molecule screen targeting ER calcium homeostasis reveals that dantrolene can prevent cell death in neural progenitor cells derived from Wolfram syndrome iPS cells. Our results demonstrate that calpain and the pathway leading its activation provides potential therapeutic targets for Wolfram syndrome and other ER diseases

    The effect of dietary fat intake on hepatic gene expression in LG/J AND SM/J mice

    Get PDF
    Background The liver plays a major role in regulating metabolic homeostasis and is vital for nutrient metabolism. Identifying the genetic factors regulating these processes could lead to a greater understanding of how liver function responds to a high-fat diet and how that response may influence susceptibilities to obesity and metabolic syndrome. In this study we examine differences in hepatic gene expression between the LG/J and SM/J inbred mouse strains and how gene expression in these strains is affected by high-fat diet. LG/J and SM/J are known to differ in their responses to a high-fat diet for a variety of obesity- and diabetes-related traits, with the SM/J strain exhibiting a stronger phenotypic response to diet. Results Dietary intake had a significant effect on gene expression in both inbred lines. Genes up-regulated by a high-fat diet were involved in biological processes such as lipid and carbohydrate metabolism; protein and amino acid metabolic processes were down regulated on a high-fat diet. A total of 259 unique transcripts exhibited a significant diet-by-strain interaction. These genes tended to be associated with immune function. In addition, genes involved in biochemical processes related to non-alcoholic fatty liver disease (NAFLD) manifested different responses to diet between the two strains. For most of these genes, SM/J had a stronger response to the high-fat diet than LG/J. Conclusions These data show that dietary fat impacts gene expression levels in SM/J relative to LG/J, with SM/J exhibiting a stronger response. This supports previous data showing that SM/J has a stronger phenotypic response to high-fat diet. Based upon these findings, we suggest that SM/J and its cross with the LG/J strain provide a good model for examining non-alcoholic fatty liver disease and its role in metabolic syndrome

    Quantitative trait loci affecting liver fat content in mice

    Get PDF
    Nonalcoholic fatty liver disease, a condition in which excess fat accumulates in the liver, is strongly associated with the metabolic syndrome, including obesity and other related conditions. This disease has the potential to progress from steatosis to steatohepatitis, fibrosis, and cirrhosis. The recent increase in the prevalence of the metabolic syndrome is largely driven by changes in diet and activity levels. Individual variation in the response to this obesogenic environment, however, is attributable in part to genetic variation between individuals, but very few mammalian genetic loci have been identified with effects on fat accumulation in the liver. To study the genetic basis for variation in liver fat content in response to dietary fat, liver fat proportion was determined using quantitative magnetic resonance imaging in 478 mice from 16 LG/J X SM/J recombinant inbred strains fed either a high-fat (42% kcal from fat) or low-fat (15% kcal from fat) diet. An analysis of variance confirmed that there is a genetic basis for variation in liver fat content within the population with significant effects of sex and diet. Three quantitative trail loci that contribute to liver fat content also were mapped

    PexRAP inhibits PRDM16-mediated thermogenic gene expression

    Get PDF
    How the nuclear receptor PPARĪ³ regulates the development of two functionally distinct types of adipose tissue, brown and white fat, as well as the browning of white fat, remains unclear. Our previous studies suggest that PexRAP, a peroxisomal lipid synthetic enzyme, regulates PPARĪ³ signaling and white adipogenesis. Here, we show that PexRAP is an inhibitor of brown adipocyte gene expression. PexRAP inactivation promoted adipocyte browning,Ā increased energy expenditure, and decreased adiposity. Identification of PexRAP-interacting proteins suggests that PexRAP function extends beyond its role as a lipid synthetic enzyme. Notably, PexRAP interacts with importin-Ī²1, a nuclear import factor, and knockdown of PexRAP in adipocytes reduced the levels of nuclear phospholipids. PexRAP also interacts with PPARĪ³, as well as PRDM16, a critical transcriptional regulator of thermogenesis, and disrupts the PRDM16-PPARĪ³ complex, providing a potential mechanism for PexRAP-mediated inhibition of adipocyte browning. These results identify PexRAP as an important regulator of adipose tissue remodeling
    • ā€¦
    corecore